博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
kylin2.4.1订单案例详细构建流程
阅读量:6363 次
发布时间:2019-06-23

本文共 11630 字,大约阅读时间需要 38 分钟。

一、Hive订单数据仓库构建:

hive表创建可以在命令行中直接完成,也可以在Hue中完成,本文在Hue中的完成,如下图:

 下文的样例文本文件下载地址:

1. 创建事实表并插入数据

执行1: DROP TABLE IF EXISTS default.fact_order ;

执行2:

create table default.fact_order (

time_key string,
product_key string,
salesperson_key string,
custom_key string,
quantity_ordered bigint,
order_dollars bigint,
cost_dollars bigint
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS TEXTFILE;

执行3:load data local inpath '/data/fact_order.txt' overwrite into table default.fact_order;

 

fact_order.txt

2016-05-01,pd001,sp001,ct001,100,2000,1000

2016-05-01,pd001,sp002,ct002,100,2000,1000
2016-05-01,pd001,sp003,ct002,100,2000,1000
2016-05-01,pd002,sp002,ct002,100,2000,1000
2016-05-01,pd003,sp003,ct001,100,2000,1000
2016-05-01,pd001,sp003,ct001,100,2000,1000
2016-05-01,pd001,sp002,ct001,100,2000,1000
2016-05-01,pd001,sp003,ct002,100,2000,1000
2016-05-01,pd002,sp001,ct001,100,2000,1000
2016-05-01,pd003,sp001,ct001,100,2000,1000
2016-05-01,pd004,sp001,ct001,50,1000,600
2016-05-02,pd001,sp001,ct001,50,1000,600
2016-05-02,pd001,sp002,ct002,100,2000,1000
2016-05-02,pd001,sp003,ct002,100,2000,1000
2016-05-02,pd002,sp001,ct001,50,1000,600
2016-05-02,pd003,sp001,ct001,50,1000,600
2016-05-02,pd004,sp001,ct001,50,1000,600
2016-05-03,pd001,sp001,ct001,50,1000,600
2016-05-03,pd001,sp002,ct002,100,2000,1000
2016-05-03,pd001,sp003,ct002,100,2000,1000
2016-05-04,pd002,sp001,ct001,700,14000,10000
2016-05-04,pd003,sp001,ct001,700,14000,10000
2016-05-04,pd004,sp001,ct001,100,2000,1000
2016-05-05,pd001,sp001,ct001,100,2000,1000
2016-05-05,pd001,sp002,ct002,700,14000,10000
2016-05-05,pd001,sp003,ct002,700,14000,10000
2016-05-05,pd002,sp001,ct001,100,2000,1000
2016-05-05,pd003,sp001,ct001,100,2000,1000
2016-05-05,pd004,sp001,ct001,100,2000,1000
2016-05-06,pd001,sp001,ct001,100,2000,1000
2016-05-06,pd001,sp002,ct002,100,2000,1000
2016-05-06,pd001,sp003,ct002,100,2000,1000
2016-05-07,pd002,sp001,ct001,100,2000,1000
2016-05-07,pd003,sp001,ct001,100,2000,1000
2016-05-07,pd004,sp001,ct001,50,1000,600
2016-05-07,pd002,sp001,ct001,100,2000,1000
2016-05-07,pd003,sp001,ct001,100,2000,1000
2016-05-07,pd004,sp001,ct001,50,1000,600
2016-05-08,pd001,sp001,ct001,50,1000,600
2016-05-08,pd001,sp002,ct002,100,2000,1000
2016-05-08,pd001,sp003,ct002,100,2000,1000
2016-05-08,pd001,sp001,ct001,50,1000,600
2016-05-08,pd001,sp002,ct002,100,2000,1000
2016-05-08,pd001,sp003,ct002,100,2000,1000
2016-05-08,pd001,sp001,ct001,50,1000,600
2016-05-08,pd001,sp002,ct002,100,2000,1000
2016-05-08,pd001,sp003,ct002,100,2000,1000
2016-05-09,pd002,sp001,ct001,50,1000,600
2016-05-09,pd003,sp001,ct001,50,1000,600
2016-05-09,pd004,sp001,ct001,50,1000,600
2016-05-09,pd001,sp001,ct001,50,1000,600
2016-05-09,pd002,sp001,ct001,50,1000,600
2016-05-09,pd003,sp001,ct001,50,1000,600
2016-05-09,pd004,sp001,ct001,50,1000,600
2016-05-09,pd001,sp001,ct001,50,1000,600
2016-05-09,pd001,sp002,ct002,100,2000,1000
2016-05-09,pd004,sp003,ct002,100,2000,1000
2016-05-09,pd002,sp001,ct001,700,14000,10000
2016-05-09,pd003,sp003,ct001,700,14000,10000
2016-05-09,pd004,sp003,ct001,100,2000,1000
2016-05-10,pd001,sp001,ct001,100,2000,1000
2016-05-10,pd001,sp002,ct002,700,14000,10000
2016-05-10,pd001,sp003,ct002,700,14000,10000
2016-05-10,pd002,sp001,ct001,100,2000,1000
2016-05-11,pd003,sp003,ct001,100,2000,1000
2016-05-11,pd004,sp001,ct001,100,2000,1000
2016-05-12,pd001,sp001,ct001,100,2000,1000
2016-05-12,pd004,sp002,ct002,100,2000,1000
2016-05-12,pd001,sp003,ct002,100,2000,1000
2016-05-12,pd001,sp001,ct001,100,2000,1000
2016-05-12,pd004,sp002,ct002,100,2000,1000
2016-05-12,pd001,sp003,ct002,100,2000,1000
2016-05-13,pd002,sp001,ct001,100,2000,1000
2016-05-13,pd003,sp001,ct001,100,2000,1000
2016-05-13,pd004,sp001,ct001,50,1000,600
2016-05-14,pd001,sp001,ct001,50,1000,600
2016-05-14,pd001,sp002,ct002,100,2000,1000
2016-05-14,pd001,sp003,ct002,100,2000,1000
2016-05-15,pd002,sp001,ct001,50,1000,600
2016-05-15,pd003,sp001,ct001,50,1000,600
2016-05-15,pd004,sp001,ct001,50,1000,600
2016-05-15,pd002,sp001,ct001,50,1000,600
2016-05-15,pd003,sp001,ct001,50,1000,600
2016-05-15,pd004,sp001,ct001,50,1000,600
2016-05-15,pd002,sp001,ct001,50,1000,600
2016-05-15,pd003,sp001,ct001,50,1000,600
2016-05-15,pd004,sp001,ct001,50,1000,600
2016-05-16,pd001,sp001,ct001,50,1000,600
2016-05-16,pd001,sp002,ct002,100,2000,1000
2016-05-16,pd001,sp003,ct002,100,2000,1000
2016-05-16,pd001,sp001,ct001,50,1000,600
2016-05-16,pd001,sp002,ct002,100,2000,1000
2016-05-16,pd001,sp003,ct002,100,2000,1000
2016-05-17,pd002,sp001,ct001,700,14000,10000
2016-05-17,pd003,sp001,ct001,700,14000,10000
2016-05-17,pd004,sp001,ct001,100,2000,1000
2016-05-17,pd002,sp001,ct001,700,14000,10000
2016-05-17,pd003,sp001,ct001,700,14000,10000
2016-05-17,pd004,sp001,ct001,100,2000,1000
2016-05-18,pd001,sp001,ct001,100,2000,1000
2016-05-18,pd003,sp002,ct001,700,14000,10000
2016-05-18,pd001,sp003,ct002,700,14000,10000
2016-05-19,pd002,sp001,ct001,100,2000,1000
2016-05-19,pd003,sp001,ct002,100,2000,1000
2016-05-20,pd001,sp001,ct001,100,2000,1000
2016-05-20,pd002,sp002,ct002,100,2000,1000
2016-05-20,pd003,sp003,ct001,100,2000,1000
2016-05-20,pd004,sp001,ct001,100,2000,1000
2016-05-20,pd001,sp002,ct002,100,2000,1000
2016-05-20,pd002,sp001,ct002,100,2000,1000

2. 创建天维度表dim_day(同样也分三步执行)

DROP TABLE IF EXISTS default.dim_day ;

create table default.dim_day (

day_key string,
full_day string,
month_name string,
quarter string,
year string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS TEXTFILE; 
load data local inpath '/data/dim_day.txt' overwrite into table default.dim_day;

 dim_day.txt

  
2016-05-01,2016-05-01,201605,2016q2,2016
2016-05-02,2016-05-02,201605,2016q2,2016
2016-05-03,2016-05-03,201605,2016q2,2016
2016-05-04,2016-05-04,201605,2016q2,2016
2016-05-05,2016-05-05,201605,2016q2,2016
2016-05-06,2016-05-06,201605,2016q2,2016
2016-05-07,2016-05-07,201605,2016q2,2016
2016-05-08,2016-05-08,201605,2016q2,2016
2016-05-09,2016-05-09,201605,2016q2,2016
2016-05-10,2016-05-10,201605,2016q2,2016
2016-05-11,2016-05-11,201605,2016q2,2016
2016-05-12,2016-05-12,201605,2016q2,2016
2016-05-13,2016-05-13,201605,2016q2,2016
2016-05-14,2016-05-14,201605,2016q2,2016
2016-05-15,2016-05-15,201605,2016q2,2016
2016-05-16,2016-05-16,201605,2016q2,2016
2016-05-17,2016-05-17,201605,2016q2,2016
2016-05-18,2016-05-18,201605,2016q2,2016
2016-05-19,2016-05-19,201605,2016q2,2016
2016-05-20,2016-05-20,201605,2016q2,2016

3. 创建售卖员的维度表salesperson_dim

 
DROP TABLE IF EXISTS default.dim_salesperson ;
 
create table default.dim_salesperson (
salesperson_key string,
salesperson string,
salesperson_id string,
region string,
region_code string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS TEXTFILE;
  
load data local inpath '/data/dim_salesperson.txt' overwrite into table default.dim_salesperson;
  
 dim_salesperson.txt
  
sp001,hongbin,sp001,beijing,10086
sp002,hongming,sp002,beijing,10086
sp003,hongmei,sp003,beijing,10086

 

4. 创建客户维度 custom_dim

 

 DROP TABLE IF EXISTS default.dim_custom ;
  
create table default.dim_custom (
custom_key string,
custom_name string,
custorm_id string,
headquarter_states string,
billing_address string,
billing_city string,
billing_state string,
industry_name string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS TEXTFILE;
 
load data local inpath '/data/dim_custom.txt' overwrite into table default.dim_custom;

 dim_custom.txt

  
ct001,custom_john,ct001,beijing,zgx-beijing,beijing,beijing,internet                    
ct002,custom_herry,ct002,henan,shlinjie,shangdang,henan,internet     
 
 
 
 
5. 创建产品维度表并插入数据
 
 DROP TABLE IF EXISTS default.dim_product ;                                              
                                                                                          
create table default.dim_product (                                                      
product_key string,                                                                 
product_name string,                                                                
product_id string,                                                                  
product_desc string,                                                                
sku string,                                                                         
brand string,                                                                       
brand_code string,                                                                  
brand_manager string,                                                               
category string,                                                                    
category_code string                                                                
)                                                                                       
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','                                           
STORED AS TEXTFILE;                                                                     
                       
load data local inpath '/data/dim_product.txt' overwrite into table default.dim_product;      
 dim_product.txt
  
pd001,Box-Large,pd001,Box-Large-des,large1.0,brand001,brandcode001,brandmanager001,Packing,cate001
pd002,Box-Medium,pd001,Box-Medium-des,medium1.0,brand001,brandcode001,brandmanager001,Packing,cate001
pd003,Box-small,pd001,Box-small-des,small1.0,brand001,brandcode001,brandmanager001,Packing,cate001
pd004,Evelope,pd001,Evelope_des,large3.0,brand001,brandcode001,brandmanager001,Pens,cate002

 

这样一个星型的结构表在hive中创建完毕, 实际上一个离线的数据仓库已经完成, 它包含一个主题, 即商品订单.

 

三.Kylin的Project创建与数据同步

1.单击"Manage Project" 
2.单击"New Project"
3.输入"Project Name", WareHouse_01
4.Submit

1.选择WareHouse_01,选择"Data Source" tab页
2.单击"Load Hive Table"
3.输入需要同步的表
  "DEFAULT.FACT_ORDER,DEFAULT.DIM_DAY,DEFAULT.DIM_PRODUCT,DEFAULT.DIM_SALESPERSON,DEFAULT.DIM_CUSTOM"
4.Sync
四.Kylin的Model创建
1.选择"Models" tab页,单击"New Model"
2."Model Name"输入,WareHouse_01_Model
3.选择"Fact Table"为 DEFAULT.FACT_ORDER;再 添加Lookup Table;

 

4.选取每张表的哪些列字段作为Dimensions
 ID Table Name           Columns
 1 DEFAULT.FACT_ORDER  TIME_KEY PRODUCT_KEY SALESPERSON_KEY CUSTOM_KEY
 2 DEFAULT.DIM_DAY          FULL_DAY
 3 DEFAULT.DIM_PRODUCT  PRODUCT_NAME
 4 DEFAULT.DIM_SALESPERSON  SALESPERSON
 5 DEFAULT.DIM_CUSTOM  CUSTOM_NAME

 

5.选取DEFAULT.FACT_ORDER表的哪些列字段作为measures

        QUANTITY_ORDERED ORDER_DOLLARS COST_DOLLARS

 

6.a.选取 "Partition Date Column"为DEFAULT.FACT_ORDER.TIME_KEY,格式 yyyy-MM-dd

  b.对于"Filter"条件,由于没有要过滤的条件,故不填写

 

7.Save

 

五.Kylin的Cube创建

 

1.选择"Models" tab页,单击"New Cube“

2.Cube Info:

          "Model Name"选择,WareHouse_01_Model
           "Cube Name"输入,cube01

3.Dismensions:

          单击"Auto Generator",依据情况选择维度的列,全选

4.Measures:

          a.单击"+Measure",添加要聚合计算的度量,添加: sum(QUANTITY_ORDERED),sum(ORDER_DOLLARS)
          b.Expression: SUM/MIN/MAX/COUNT/COUNT_DISTINCT/TOP_N/RAW
5.Refresh Setting:
          a.Auto Merge Thresholds,自动合并阈值,7~28 days
   b.Retention Threshold,保留天数,60
   c.Partition Start Date,非常重要,是后面build cube的开始日期

 

6.Advanced Setting:

        --Aggregation Groups:
   a.Includes: TIME_KEY ,PRODUCT_KEY ,SALESPERSON_KEY , CUSTOM_KEY
   b.Mandatory Dimensions: TIME_KEY
   c.Hierarchy Dimensions: PRODUCT_KEY ,SALESPERSON_KEY ,CUSTOM_KEY
   d.Joint Dimensions: 无
       --Rowkeys:
 TIME_KEY ,PRODUCT_KEY ,SALESPERSON_KEY ,CUSTOM_KEY 4个字段为dict字典编码
 
7.Configuration Overwrites: 无

8.Overview:

          保存cube

 

五.Cube Build

1.选择 cube01,单击”Action”,选择Build

2.填写End Date,Submit

3.单击”Monitor”,观察Job

4.等待Process100% (Any Errors)

 

5.返回cube01,查看 cube size 和 Source Records等字段更新

 

六.Hive* kyin 查询对比

点击(此处)折叠或打开

  1. 1.2016-05-01到2016-05-15期间的每天的订单数量,订单金额,订单成本
  2. Hive: 65.816 s
  3. select fact.time_key, sum(fact.quantity_ordered), sum(fact.order_dollars) from fact_order as fact where fact.time_key >= "2016-05-01" and fact.time_key <= "2016-05-15" group by fact.time_key order by fact.time_key;
  4. Kylin: 0.32s-->0.27s 
  5. select fact.time_key, sum(fact.quantity_ordered), sum(fact.order_dollars) from fact_order as fact where fact.time_key between '2016-05-01' and '2016-05-15'group by fact.time_key order by fact.time_key

 

  1. 2.2016-05-01到2016-05-15期间的每天的产品的订单量
  2. Hive: 100.336s
  3. select dday.full_day,dsp.product_name, sum(fact.quantity_ordered) from fact_order as fact inner join dim_day as dday on fact.time_key = dday.day_key inner join dim_product as dsp on fact.product_key = dsp.product_key where dday.full_day >= "2016-05-01" and dday.full_day <= "2016-05-15" group by dday.full_day,dsp.product_nameorder by dday.full_day,dsp.product_name;

     

  4. Kylin:0.93s-->0.39s
  5. select dday.full_day,dsp.product_name, sum(fact.quantity_ordered) from fact_order as fact inner join dim_day as dday on fact.time_key = dday.day_key inner join dim_product as dsp on fact.product_key = dsp.product_key where dday.full_day >= '2016-05-01' and dday.full_day <= '2016-05-15' group by dday.full_day,dsp.product_nameorder by dday.full_day,dsp.product_name

本文参考:

http://blog.itpub.net/30089851/viewspace-2122586/

http://www.mamicode.com/info-detail-2332910.html

转载于:https://www.cnblogs.com/qqflying/p/10943010.html

你可能感兴趣的文章
squid via检测转发循环
查看>>
计算分页
查看>>
iptables 做nat路由器脚本
查看>>
数据结构(C语言版)第三章:栈和队列
查看>>
Keepalive 之 keepalive概念介绍
查看>>
Stopping and/or Restarting an embedded Jetty in...
查看>>
Oracle存储过程中的数据集输入参数
查看>>
vsftp 配置
查看>>
VCSA中配置时间和时区,实测至6.5适用
查看>>
高并发IM系统架构优化实践
查看>>
产品经理教你玩转阿里云负载均衡SLB系列(一):快速入门--什么是负载均衡
查看>>
有关linux--进程组、会话、守护进程详解
查看>>
我的友情链接
查看>>
我的友情链接
查看>>
monkeyrunner运行Python脚本来检查apk渠道和验证是否可以调用微信
查看>>
github获得SSH Key解决Permission denied (publickey)问题
查看>>
用java代码编写Oracle存储过程
查看>>
APACHE转发
查看>>
android-market-api
查看>>
解決 yum update錯誤:[Errno -1] Metadata file does not match checksum
查看>>